147 research outputs found

    Organic compounds of gallium. III. Reactions of gallium alkoxides with acetylacetone, ethyl acetoacetate, methyl acetoacetate, and methyl salicylate

    Get PDF
    Derivatives of gallium of the type: Ga(i-C3H7O)3-xligx (x = 1, 2, or 3; and H lig = acetylacetone, methyl and ethyl acetoacetate, or methyl salicylate) have been synthesized by reacting gallium alkoxides with ligands in various molar ratios. The compounds are soluble in organic solvents and could be volatilized under reduced pressure. Their molecular weights have been determined ebullioscopically. The infrared spectra of some of the compounds have been studied

    Annotating Whole Genome Sequencing in COSMIC (The Catalogue of Somatic Mutations in Cancer)

    Get PDF
    "COSMIC, the Catalogue Of Somatic Mutations In Cancer":http://www.sanger.ac.uk/cosmic is designed to store and display somatic mutation information relating to human cancers, combining detailed information on publications, samples and mutation types. The information is curated both from the primary literature and the laboratories at the Cancer Genome Project, Sanger Institute, UK, and then semi-automatically entered into the COSMIC database. The v47 release (May 2010) contained the curation of 9202 papers describing 116,977 mutations across 466,851 samples. In order to provide consistent annotation of the data, COSMIC has developed a classification system for cancer histology and tissue ontology, and adapted HGVS mutation nomenclature recommendations to describe the multiple mutation types involved in cancer. 

Cancer genetics is moving from systematic screens of candidate gene sets to whole genome sequencing analyses, and COSMIC displays and navigates this new data; we have recently included systematic gene screens and whole genome sequencing studies. COSMIC will annotate and display somatic mutation data that will be emerging from the "International Cancer Genome Consortium (ICGC)":http://www.icgc.org/ and "The Cancer Genome Atlas (TCGA)":http://cancergenome.nih.gov/ projects. New tools are being developed to interpret this genomic data with coding mutation annotations. In addition COSMIC will be expanded to curate and display data from mouse insertional mutagenesis screening and mouse cancer model exome/genome sequencing in the future. The data within COSMIC is freely available without restriction via a website, in datasheets on the "FTP site":ftp://ftp.sanger.ac.uk/pub/CGP/cosmic and through the "COSMIC Biomart":http://www.sanger.ac.uk/genetics/CGP/cosmic/biomart/martview/, available from the "COSMIC homepage":http://www.sanger.ac.uk/cosmic 
&#xa

    TOpic: rare and special cases, the real "Strange cases"

    Get PDF
    Introduction: The bladder hernia represents approximately 1-3% of all inguinal hernias, where patients aged more than 50 years have a higher incidence (10%). Many factors contribute to the development of a bladder hernia, including the presence of a urinary outlet obstruction causing chronic bladder distention, the loss of bladder tone, pericystitis, the perivesical bladder fat protrusion and the obesity

    COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer

    Get PDF
    COSMIC (http://www.sanger.ac.uk/cosmic) curates comprehensive information on somatic mutations in human cancer. Release v48 (July 2010) describes over 136 000 coding mutations in almost 542 000 tumour samples; of the 18 490 genes documented, 4803 (26%) have one or more mutations. Full scientific literature curations are available on 83 major cancer genes and 49 fusion gene pairs (19 new cancer genes and 30 new fusion pairs this year) and this number is continually increasing. Key amongst these is TP53, now available through a collaboration with the IARC p53 database. In addition to data from the Cancer Genome Project (CGP) at the Sanger Institute, UK, and The Cancer Genome Atlas project (TCGA), large systematic screens are also now curated. Major website upgrades now make these data much more mineable, with many new selection filters and graphics. A Biomart is now available allowing more automated data mining and integration with other biological databases. Annotation of genomic features has become a significant focus; COSMIC has begun curating full-genome resequencing experiments, developing new web pages, export formats and graphics styles. With all genomic information recently updated to GRCh37, COSMIC integrates many diverse types of mutation information and is making much closer links with Ensembl and other data resources

    Data mining using the Catalogue of Somatic Mutations in Cancer BioMart

    Get PDF
    Catalogue of Somatic Mutations in Cancer (COSMIC) (http://www.sanger.ac.uk/cosmic) is a publicly available resource providing information on somatic mutations implicated in human cancer. Release v51 (January 2011) includes data from just over 19 000 genes, 161 787 coding mutations and 5573 gene fusions, described in more than 577 000 tumour samples. COSMICMart (COSMIC BioMart) provides a flexible way to mine these data and combine somatic mutations with other biological relevant data sets. This article describes the data available in COSMIC along with examples of how to successfully mine and integrate data sets using COSMICMart

    Alveolar soft part sarcoma: clinicopathological findings in a series of 11 cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alveolar sarcoma of the soft parts (ASPS) represents a very rare entity of soft tissue sarcoma with special features such as young peak age incidence and frequent metastasis to the brain. The aim of this study was a clinicopathological analysis with special reference to treatment and outcome.</p> <p>Methods</p> <p>From the database of the BG-University Hospital Bergmannsheil, 1597 soft tissue sarcoma (STS) cases were reviewed and 11 consecutive patients with ASPS were isolated. Data was acquired from patients' charts and contact to patients, their relatives or general practitioners, with special reference to treatment and clinical course. The average follow up time from the time of the definite operation for the primary tumor was 6.5 years. Kaplan-Meier method was used to calculate survival.</p> <p>Results</p> <p>Patients with localized disease who received complete resection and adjuvant radiation and who did not develop recurrence or metastatic disease within 2 years after surgery had a positive outcome. The size of the tumor, its localization, and the time of untreated growth before treatment did not influence the long-term results. All patients who developed recurrent disease also suffered from distant metastasis, reflecting the aggressive biology of the tumor. All patients with distant metastasis had the lungs and the brain affected.</p> <p>Conclusion</p> <p>Due to the limited number of patients with ASPS, prospective studies would have to span decades to gather a significant collective of patients; therefore, it is not possible to comment meaningfully on a possible benefit of neoadjuvant or adjuvant therapy.</p> <p>We recommend wide surgical excision and, in the absence of data telling otherwise, adjuvant radiation. In cases with recurrent disease or metastasis, the prognosis is bad and further treatment will be restricted to palliation in most cases.</p

    The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline

    Get PDF
    QUESTION: Should patients with newly-diagnosed metastatic brain tumors undergo open surgical resection versus whole brain radiation therapy (WBRT) and/or other treatment modalities such as radiosurgery, and in what clinical settings? TARGET POPULATION: These recommendations apply to adults with a newly diagnosed single brain metastasis amenable to surgical resection. RECOMMENDATIONS: Surgical resection plus WBRT versus surgical resection alone Level 1 Surgical resection followed by WBRT represents a superior treatment modality, in terms of improving tumor control at the original site of the metastasis and in the brain overall, when compared to surgical resection alone. Surgical resection plus WBRT versus SRS + or - WBRT Level 2 Surgical resection plus WBRT, versus stereotactic radiosurgery (SRS) plus WBRT, both represent effective treatment strategies, resulting in relatively equal survival rates. SRS has not been assessed from an evidence-based standpoint for larger lesions (\u3e3 cm) or for those causing significant mass effect (\u3e1 cm midline shift). Level 3 Underpowered class I evidence along with the preponderance of conflicting class II evidence suggests that SRS alone may provide equivalent functional and survival outcomes compared with resection + WBRT for patients with single brain metastases, so long as ready detection of distant site failure and salvage SRS are possible. Note The following question is fully addressed in the WBRT guideline paper within this series by Gaspar et al. Given that the recommendation resulting from the systematic review of the literature on this topic is also highly relevant to the discussion of the role of surgical resection in the management of brain metastases, this recommendation has been included below

    The role of retreatment in the management of recurrent/progressive brain metastases: a systematic review and evidence-based clinical practice guideline

    Get PDF
    QUESTION: What evidence is available regarding the use of whole brain radiation therapy (WBRT), stereotactic radiosurgery (SRS), surgical resection or chemotherapy for the treatment of recurrent/progressive brain metastases? TARGET POPULATION: This recommendation applies to adults with recurrent/progressive brain metastases who have previously been treated with WBRT, surgical resection and/or radiosurgery. Recurrent/progressive brain metastases are defined as metastases that recur/progress anywhere in the brain (original and/or non-original sites) after initial therapy. RECOMMENDATION: Level 3 Since there is insufficient evidence to make definitive treatment recommendations in patients with recurrent/progressive brain metastases, treatment should be individualized based on a patient\u27s functional status, extent of disease, volume/number of metastases, recurrence or progression at original versus non-original site, previous treatment and type of primary cancer, and enrollment in clinical trials is encouraged. In this context, the following can be recommended depending on a patient\u27s specific condition: no further treatment (supportive care), re-irradiation (either WBRT and/or SRS), surgical excision or, to a lesser extent, chemotherapy. Question If WBRT is used in the setting of recurrent/progressive brain metastases, what impact does tumor histopathology have on treatment outcomes? No studies were identified that met the eligibility criteria for this question

    Clinical Characteristics, Racial Inequities, and Outcomes in Patients with Breast Cancer and COVID-19: A COVID-19 and Cancer Consortium (CCC19) Cohort Study

    Get PDF
    BACKGROUND: Limited information is available for patients with breast cancer (BC) and coronavirus disease 2019 (COVID-19), especially among underrepresented racial/ethnic populations. METHODS: This is a COVID-19 and Cancer Consortium (CCC19) registry-based retrospective cohort study of females with active or history of BC and laboratory-confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection diagnosed between March 2020 and June 2021 in the US. Primary outcome was COVID-19 severity measured on a five-level ordinal scale, including none of the following complications, hospitalization, intensive care unit admission, mechanical ventilation, and all-cause mortality. Multivariable ordinal logistic regression model identified characteristics associated with COVID-19 severity. RESULTS: 1383 female patient records with BC and COVID-19 were included in the analysis, the median age was 61 years, and median follow-up was 90 days. Multivariable analysis revealed higher odds of COVID-19 severity for older age (aOR per decade, 1.48 [95% CI, 1.32-1.67]); Black patients (aOR 1.74; 95 CI 1.24-2.45), Asian Americans and Pacific Islander patients (aOR 3.40; 95 CI 1.70-6.79) and Other (aOR 2.97; 95 CI 1.71-5.17) racial/ethnic groups; worse ECOG performance status (ECOG PS ≥2: aOR, 7.78 [95% CI, 4.83-12.5]); pre-existing cardiovascular (aOR, 2.26 [95% CI, 1.63-3.15])/pulmonary comorbidities (aOR, 1.65 [95% CI, 1.20-2.29]); diabetes mellitus (aOR, 2.25 [95% CI, 1.66-3.04]); and active and progressing cancer (aOR, 12.5 [95% CI, 6.89-22.6]). Hispanic ethnicity, timing, and type of anti-cancer therapy modalities were not significantly associated with worse COVID-19 outcomes. The total all-cause mortality and hospitalization rate for the entire cohort was 9% and 37%, respectively however, it varied according to the BC disease status. CONCLUSIONS: Using one of the largest registries on cancer and COVID-19, we identified patient and BC-related factors associated with worse COVID-19 outcomes. After adjusting for baseline characteristics, underrepresented racial/ethnic patients experienced worse outcomes compared to non-Hispanic White patients. FUNDING: This study was partly supported by National Cancer Institute grant number P30 CA068485 to Tianyi Sun, Sanjay Mishra, Benjamin French, Jeremy L Warner; P30-CA046592 to Christopher R Friese; P30 CA023100 for Rana R McKay; P30-CA054174 for Pankil K Shah and Dimpy P Shah; KL2 TR002646 for Pankil Shah and the American Cancer Society and Hope Foundation for Cancer Research (MRSG-16-152-01-CCE) and P30-CA054174 for Dimpy P Shah. REDCap is developed and supported by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH). The funding sources had no role in the writing of the manuscript or the decision to submit it for publication. CLINICAL TRIAL NUMBER: CCC19 registry is registered on ClinicalTrials.gov, NCT04354701
    corecore